Abstract
We study the nonlinear multi-mode dynamics of a microbeam for noncontact atomic force microscopy in ultra-high vacuum. A boundary-value problem that includes a coupled linear thermo- and viscoelastic field with a localized nonlinear atomic interaction force, augmented by the linearized heat equation, is reduced to a modal dynamical system via Galerkin’s method. An equivalent linear thermoelastic quality factor is obtained and compared with a closed form solution. A numerically obtained escape curve defines valid operating parameters for low damping conditions. Primary, secondary and coupled internal resonances of a three-mode system are examined to reveal a rich bifurcation structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.