Abstract

The least squares method is often used to estimate the parameters in multi-functional sensor signal reconstruction. If the data has been contaminated, the computational result of the method turns out to be insignificant. Two methods presented in this paper are suitable for different nonlinear conditions, which are based on the combination of the total least squares algorithm with the local linearization strategy and Stone-Weierstrass theorem. The two methods evaluate both the sensor output bias and its input error. The results of emulation and theory analysis indicate that the proposed algorithms are more accurate and reliable for signal reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.