Abstract

A microscopic derivation of the generalized Langevin equation for arbitrary powers of the momentum of an impurity in a harmonic chain is presented. As a direct consequence of the Gaussian character of the conditional momentum distribution function, nonlinear momentum coupling effects are absent for this system and the Langevin equation takes on a particularly simple form. The kernels which characterize the decay of higher powers of the impurity momentum depend on the ratio of the masses of the impurity and bath particles, in contrast to the situation for the momentum Langevin equation for this system. The simplicity of the harmonic chain dynamics is exploited in order to investigate several features of the relaxation, such as the factorization approximation for time-dependent correlation functions and the decay of the kinetic energy autocorrelation function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.