Abstract

We study the optical response of cold rubidium atoms driven into the four-level Y configuration exhibiting two high Rydberg levels in the regime of electromagnetically induced transparency (EIT). Atoms excited to either Rydberg level interact with each other just via self-blockade potentials (I) or also via cross blockade potentials (II). Numerical results show a few interesting quantum phenomena on the transmitted properties of a weak probe field owing to controlled single and double Rydberg blockade. In case (I), it is viable to switch between single-photon outputs with vanishing (invariable) two-photon (three-photon) correlation and photon-pair outputs with vanishing (invariable) three-photon (two-photon) correlation. Such output switch can be easily done by modulating frequencies and intensities of two strong coupling fields to create a degenerate EIT window or two separated EIT windows. In case (II), we find that two-photon and three-photon correlations decrease together at a degenerate EIT window center while increasing together between two separated EIT windows. Such consistent changes are observed because both correlations are modified by the identical polarizability degradation though depending on single and double Rydberg blockade, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call