Abstract

We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin–orbit coupled spin-1 Bose–Einstein condensates trapped in harmonic potential. The ground state of the system is determined by minimizing the Lagrange density, and the coupled equations of motions for the center-of-mass coordinate of the condensate and its width are derived. Then, two low energy excitation modes in breathing dynamics and dipole dynamics are obtained analytically, and the mechanism of exciting the anharmonic collective dynamics is revealed explicitly. The coupling among spin–orbit coupling, Raman coupling and spin-dependent interaction results in multiple external collective modes, which leads to the anharmonic collective dynamics. The cooperative effect of spin momentum locking and spin-dependent interaction results in coupling of dipolar and breathing dynamics, which strongly depends on spin-dependent interaction and behaves distinct characters in different phases. Interestingly, in the absence of spin-dependent interaction, the breathing dynamics is decoupled from spin dynamics and the breathing dynamics is harmonic. Our results provide theoretical evidence for deep understanding of the ground sate phase transition and the nonlinear collective dynamics of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call