Abstract
Measurement errors in economic data are pervasive and nontrivial in size. The presence of measurement errors causes biased and inconsistent parameter estimates and leads to erroneous conclusions to various degrees in economic analysis. While linear errors-in-variables models are usually handled with well-known instrumental variable methods, this article provides an overview of recent research papers that derive estimation methods that provide consistent estimates for nonlinear models with measurement errors. We review models with both classical and nonclassical measurement errors, and with misclassification of discrete variables. For each of the methods surveyed, we describe the key ideas for identification and estimation, and discuss its application whenever it is currently available. (JEL C20, C26, C50)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.