Abstract
AbstractUsing the principles of Takagi-Sugeno fuzzy modelling allows the integration of flexible fuzzy approaches and rigorous mathematical tools of linear system theory into one common framework. The rule-based T-S fuzzy model splits a nonlinear system into several linear subsystems. Parallel Distributed Compensation (PDC) controller synthesis uses these T-S fuzzy model rules. The resulting fuzzy controller is nonlinear, based on fuzzy aggregation of state controllers of individual linear subsystems. The system is optimized by the linear quadratic control (LQC) method, its stability is analysed using the Lyapunov method. Stability conditions are guaranteed by a system of linear matrix inequalities (LMIs) formulated and solved for the closed loop system with the proposed PDC controller. The additional GA optimization procedure is introduced, and a new type of its fitness function is proposed to improve the closed-loop system performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.