Abstract

The present study focuses on an experimental investigation of nonlinear air spring effects in a passive sealed Tuned Liquid Column Damper (TLCD). The aim is to quantify the polytropic process representing the pressure-volume variation in a sealed air column and examine the extent of stiffness nonlinearity present in the system. This is accomplished by measuring pressure data using pressure transducers and liquid elevations using wave gauges. The mathematical model of the sealed TLCD considering the pressure-volume relation in the sealed air column as an isentropic process is presented and validated with the experimental results. The expressions for nonlinear and linearized air spring stiffness and linearized natural frequency of the damper are presented. The effect of linearization of the air spring stiffness on damper performance is examined and found to be acceptable under certain conditions. It is seen that though the passive sealed TLCD is intrinsically nonlinear, both in damping and in stiffness, the effect of the stiffness nonlinearity is small and the system possesses a natural frequency which may be effectively used for the purpose of tuning. Finally, the variation of the damper frequency due to change in different design parameters is presented to demonstrate the options to utilize this damper in the high frequency range where the conventional open TLCD is not applicable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.