Abstract

This paper investigates the nonlinear modeling and stability of a doubly-fed variable speed pumped storage power station (DFVSPSPS). Firstly, the mathematical model of DFVSPSPS with surge tank considering nonlinear pump turbine characteristics was derived and established. Then, Hopf bifurcation analysis of DFVSPSPS was performed. The stable region was identified and verified by example analysis. Moreover, the effect mechanism of nonlinear pump turbine characteristics on the stability of DFVSPSPS was explored. Finally, the influence of factors on the stability and dynamic response of DFVSPSPS was studied. The results indicate that the emerged Hopf bifurcation of DFVSPSPS is supercritical and the region on the low side of the bifurcation line is the stable region. Nonlinear head characteristics have a significant influence on the stability and dynamic response of DFVSPSPS. Nonlinear speed characteristics have an obvious effect on the stability and dynamic response of DFVSPSPS only under positive load disturbance and unstable surge tank. Nonlinear head characteristics are unfavorable for the stability of DFVSPSPS under positive load disturbance and favorable under negative load disturbance. A smaller flow inertia of penstock, a smaller head loss of penstock and a greater unit inertia time constant are favorable for the stability of DFVSPSPS. The stable region under the positive disturbance of active power is larger than that under the negative disturbance of active power. The time constant of the surge tank presents a saturation characteristic on the stability of DFVSPSPS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call