Abstract

We address modeling and control of a gate access automation system. A model of the mechatronic system is derived and identified. Then, an approximate explicit feedback linearization scheme is proposed, which ensures almost linear response between the electronic driver duty cycle input and the delivered torque. A nonlinear optimization problem is solved offline to generate a feasible trajectory associated with a feedforward action, and a low-level feedback controller is designed to track it. The feedback gains can be conveniently tuned by solving a set of convex linear matrix inequalities, performing a multiobjective tradeoff between disturbance attenuation and transient response. The proposed control strategy is tested on an industrial device. The experiments show that it can effectively meet the requirements in terms of robustness, load disturbance rejection, and tracking performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.