Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> Pneumatic actuators are low-cost, safe, clean, and exhibit a high power to weight ratio. In this paper a new modeling approach and control law for pneumatic servo actuators are presented. The nonlinear system model is developed using a combination of mechanistic and empirical methods. The use of novel bipolynomial functions to model the valve flow rates is shown to produce a more accurate solution than prior approaches. A novel multiple-input single-output nonlinear position control law is designed using the backstepping methodology. The stability analysis includes the effects of friction modeling error and valve modeling error. Experiments are conducted with 9.5-mm bore and 6.4-mm bore pneumatic cylinders, and four low-cost two-way proportional valves. In experiments with the 9.5-mm bore cylinder and a 1.5-kg moving mass, maximum tracking errors of <formula formulatype="inline"><tex>${\pm} 0.5$</tex></formula> mm for a 1-Hz sine wave trajectory, and steady-state errors within <formula formulatype="inline"> <tex>${\pm} 0.05$</tex></formula> mm for an S-curve trajectory were achieved. </para>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.