Abstract

In this paper, we apply a discrete-time Takagi-Sugeno Fuzzy Model (TSFM) based model predictive controller (MPC) to a Martian aerocapture vehicle following an arbitrary trajectory. We compare two baseline controllers: a continuous-time TSFM based parallel distributed controller (PDC) and a finite-horizon linear quadratic regulator (LQR). We evaluate the change in velocity (ΔV) required to bring the orbit of the controlled exit conditions to the orbit of the reference trajectory exit conditions over a range of initial condition errors and perturbations to atmospheric density. The LQR controller was least robust but performed best in a smaller range of perturbations. The PDC controller was most robust but performed the worst. The MPC based controllers demonstrate a balance of robustness and performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call