Abstract

Minimizing the amount of electrical stimulation can potentially mitigate the adverse effects of muscle fatigue during functional electrical stimulation (FES) induced limb movements. A gradient projection-based model predictive controller is presented for optimal control of a knee extension elicited via FES. A control Lyapunov function was used as a terminal cost to ensure stability of the model predictive control. The controller validation results show that the algorithm can be implemented in real-time with a steady-state RMS error of less than 2°. The experiments also show that the controller follows step changes in desired angles and is robust to external disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.