Abstract
The purpose of this study was to employ Artificial Neural Networks (ANNs) to develop data-driven models that would enable the shrinking horizon nonlinear model predictive control of a computationally intensive stochastic multiscale system. The system of choice was a simulation of thin film formation by chemical vapour deposition. Two ANNs were trained to estimate the system’s observables. The ANNs were subsequently employed in a shrinking horizon optimization scheme to obtain the optimal time-varying profiles of the manipulated variables that would meet the desired thin film properties at the end of the batch. The resulting profiles were validated using the stochastic multiscale system and a good agreement with the predictions of the ANNs was observed. Due to their observed computational efficiency, accuracy, and the ability to reject disturbances, the ANNs seem to be a promising approach for online optimization and control of computationally demanding multiscale process systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.