Abstract

A nonlinear model predictive control (NMPC) algorithm was developed to dose the chemotherapeutic agent tamoxifen based on a novel saturating-rate, cell-cycle model (SCM). Using daily tumor measurements, the algorithm decreased tumor volume along a specified reference trajectory in simulated animals over 4 months. In mismatch case studies, controllers based on the Gompertz model (GM) yielded equivalent total drug delivered and elapsed time to t 99 % reference step convergence to those obtained using the SCM, though this performance was dependent on the cell-cycle phase of drug effect. Overall, the NMPC algorithm is suitable for dosing chemotherapeutics with regular administration schedules and may be adapted for regularly administered chemotherapeutics other than tamoxifen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.