Abstract

Manufacturers of diesel engines are under increasing pressure to meet progressively stricter NO x emission limits. A key NO x abatement technology is selective catalytic reduction in which ammonia, aided by a catalyst, reacts with NO x in the exhaust stream to produce nitrogen and water. The conversion efficiency is temperature dependent: at low temperature, reaction rates are temperature limited, resulting in suboptimal NO x removal, whereas at high temperatures, they are mass transfer limited. Maintaining sufficiently high temperature to allow maximal conversion is a challenge, particularly after cold start, as well as during conditions in which exhaust heat is insufficient, such as periods of low load or idling. In this work, a nonlinear model predictive controller simultaneously manages urea injection and power to an electric catalyst heater, in the presence of constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.