Abstract
Single wafer rapid thermal processing (RTP) has become one of the key technologies in semiconductor manufacturing due to its faster wafer processing with reduced thermal budget and precise control of processing conditions. As the standard size of the silicon wafer grows and integration of integrated circuits increases, better control to improve the processing time, uniformity, and repeatability of processing is required. In RTP, identification and control are complicated because of high nonlinearity, drift, and time varying nature of the wafer dynamics. Physical models for the wafer dynamics have been available, but they are not utilized fully for identification and control. Here, based on a physical model of wafer, a practical identification method and an analytic linearizing control method are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.