Abstract

In this first part of a two-part study, the general nonlinear system identification methodology developed earlier by the authors for a single-degree-of-freedom (SDOF) system using the reverse-multi-input/single-output (R-MI/SO) technique is extended to a multi-degree-of-freedom (MDOF), sub-merged, moored structure with surge and heave motions. The physical nonlinear MDOF system model and the formulation of the R-MI/SO system-identification technique are presented. The corresponding numerical algorithm is then developed and applied to the experimental data of the MDOF system using only the subharmonic motion responses to identify the system parameters. The resulting model is then employed in Part 2 for a detailed analysis of both the sub and superharmonic dynamic behavior of the MDOF experimental system and a comparison of the MDOF response results and observations with those of the corresponding SDOF system examined earlier by the authors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call