Abstract
In this article, the nonlinear mixed convection flow of nanofluid past a slender cylinder, which is vertically moving with constant velocity, with viscous dissipation effects is examined. The governing equations of the flow are in the form of dimensional nonlinear partial differential equations (NPDEs), which are brought to non-dimensional form, along with the boundary conditions, by employing non-similar transformations. The resultant non-dimensional NPDEs are solved by adopting quasilinearization technique and implicit finite difference method. The numerical study focuses analysis of various non-dimensional parameters, such as Brownian diffusion Nb, nonlinear mixed convection $$\gamma$$, Richardson number Ri, Lewis number Le, Eckert number or viscous dissipation Ec, thermophoresis Nt, nanoparticle buoyancy ratio Nr, velocity ratio $$\varepsilon$$, on profiles as well as gradients in detail. The numerical results unveil that the increasing values of Ec increase temperature of the fluid. Further, wall gradients for energy transfer and also nanoparticle mass transfer are studied in the presence as well as in the absence of nonlinear mixed convection effects. At $$\xi = 1$$ as Nt increases from 0.05 to 0.15, the friction between the wall and the fluid increases by about 15.23% and 22.41% for Nb = 0.15 and Nb = 0.3, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.