Abstract
Fully suppressing edge-localized modes (ELMs), e.g., with resonant magnetic perturbations (RMPs), is essential to reach and sustain high-performance steady-state H-mode plasmas because large ELMs can significantly reduce the lifetime of divertor components in future tokamak reactors. RMP-driven ELM suppression in KSTAR has been modeled by coupling the neoclassical transport code PENTRC to the nonlinear 3D MHD code JOREK. We have found that the radial transport from the combined effects of the kink-peeling, tearing response, and neoclassical toroidal viscosity can explain the pedestal degradation observed in experiments. In addition, it has been found that the RMP response can increase the inter-ELM heat flux on the lower outer divertor by redistributing the heat transport between the divertor plates. In addition to the degraded pedestal, ELM suppression is also attributable to the RMP-induced mode interactions. While the linear stability of peeling-ballooning mode (PBMs) improves owing to the degraded pedestal, the PBM and RMP interaction increases the spectral transfer between edge harmonics, preventing catastrophic growth and the crash of unstable modes. Here, it turns out that the magnetic islands near the pedestal top can play a vital role in mediating the mode interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.