Abstract

Typical model reduction methods for parametric partial differential equations construct a linear space Vn which approximates well the solution manifold M consisting of all solutions u(y) with y the vector of parameters. In many problems of numerical computation, nonlinear methods such as adaptive approximation, n-term approximation, and certain tree-based methods may provide improved numerical efficiency over linear methods. Nonlinear model reduction methods replace the linear space Vn by a nonlinear space Σn. Little is known in terms of their performance guarantees, and most existing numerical experiments use a parameter dimension of at most two. In this work, we make a step towards a more cohesive theory for nonlinear model reduction. Framing these methods in the general setting of library approximation, we give a first comparison of their performance with the performance of standard linear approximation for any compact set. We then study these methods for solution manifolds of parametrized elliptic PDEs. We study a specific example of library approximation where the parameter domain is split into a finite number N of rectangular cells, with affine spaces of dimension m assigned to each cell, and give performance guarantees with respect to accuracy of approximation versus m and N.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.