Abstract
This paper examines the Cauchy problem described by the following equation: ∂tλ+1ϕ-Δϕ=∫0t(t-s)-γϕ(s,.)pds,ϕ(0,x)=ϕ0(x),ϕt(0,x)=ϕ1(x).(1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\partial _{t}^{\\lambda +1}\\phi -\\Delta \\phi =\\int _{0}^{t}(t-s)^{- \\gamma } \\left| \\phi (s,.) \\right| ^{p}ds,\\quad \\phi (0,x)=\\phi _{0}(x),\\quad \\phi _{t}(0,x)=\\phi _{1}(x). \\quad \\mathrm{(1)} \\end{aligned}$$\\end{document}The equation involves the Caputo fractional derivative in time, denoted as ∂tλ+1ϕ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\partial _{t}^{\\lambda +1}\\phi$$\\end{document}. Additionally, The nonlinear term is determined by the memory term ∫0t(t-s)-γϕ(s,.)pds\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\int _{0}^{t}(t-s)^{- \\gamma } \\left| \\phi (s,.) \\right| ^{p}ds$$\\end{document}, where γ∈(0,1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma \\in (0,1)$$\\end{document}. Using the fixed point theorem, we establish the global existence of solutions to the Cauchy problem (1) for small initial data. We also investigate the impact of the nonlinearity parameter on the range of the exponent p and the estimation of the solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.