Abstract

The article aimed to show the fundamental possibility of constructing a computational digital twin of the acoustic tomograph within the framework of a unified physics–mathematical model based on the Navier–Stokes equations. The authors suggested that the size of the modeling area is quite small, sound waves are waves of “small” disturbance, and given that a person consists of more than 60% water, human organs can be modeled using a liquid model, taking into account their density. During numerical experiments, we obtained the pressure registered in the receivers that are located on the side walls of the tomograph. The differences in pressure values are shown depending on the configuration of inclusions in the mannequin imitating internal organs. The results show that the developed technology can be used to probe the human body in medical acoustic tomographs and determine the acoustic parameters of the human body to detect neoplasms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call