Abstract

An approximate technique for assessing the reliability of nonlinear multi-degree-of-freedom (MDOF) systems subject to a non-stationary stochastic excitation vector is developed. The proposed technique can be construed as a two-stage approach. First, relying on statistical linearization and utilizing a dimension reduction approach the nonlinear n-degree-of-freedom system is decoupled and cast into (n) effective single-degree-of-freedom (SDOF) linear time-variant (LTV) oscillators. Second, utilizing the effective SDOF LTV oscillator time-varying stiffness and damping elements in conjunction with a stochastic averaging treatment of the problem, the MDOF system survival probability and first-passage PDF are determined. Overall, the developed technique appears to be efficient and versatile since it can handle readily, at a low computational cost, a wide range of nonlinear/hysteretic behaviors as well as various stochastic excitation forms, even of the fully non-stationary in time and frequency kind. A 3-DOF system exhibiting hysteresis following the Bouc-Wen model is included in the numerical examples section. Comparisons with pertinent Monte Carlo simulations demonstrate the accuracy of the technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call