Abstract
We demonstrate the controllable nonlinear microwave modulation in a cyclically driven three-level superconducting Josephson system. By designing two subtle matched conditions in the △-type atom-field configuration, a new physical mechanism – combined action of nonlinear wave mixing and wave interference – is developed and leads to not only amplification but also attenuation for two microwave signals. Our results show that such a nonlinear manipulation of the signal transition from enhancement to damping can be tuned in a large scope by controlling the relative phase and the driving-field frequency and thus the solid-state Josephson system can act as a phase- and frequency-controlled amplitude modulator. Our study opens up a fascinating perspective for its widespread applications in nonlinear optics and quantum information science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.