Abstract

We study the interplay between three-dimensional (3D) fully correlated optical turbulence and nonlinearity in time and 3D space resolved long-wavelength infrared pulsed beam propagation. Here the average self-trapped beam waist exceeds the inner scale in contrast to near-infrared filaments, and we find that their nonlinear self-channeling remains robust even in the presence of strong turbulence. More surprisingly, our simulation results invite a conjecture that in regimes where diffraction and nonlinearity are roughly balanced, turbulence can result in a tighter localization of the nonlinear beam core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.