Abstract

Modulation instability (MI) in the presence of noise typically leads to an irreversible and complete disintegration of a plane wave background. Here we report on experiments performed in a coherently driven nonlinear optical resonator that demonstrate nonlinear localization of dissipative MI: formation of persisting domains of MI-driven spatiotemporal chaos surrounded by a stable quasi-plane-wave background. The persisting localization ensues from a combination of bistability and complex spatiotemporal nonlinear dynamics that together permit a locally induced domain of MI to be pinned by a shallow modulation on the plane wave background. We further show that the localized domains of spatiotemporal chaos can be individually addressed-turned on and off at will-and we explore their transport behavior as the strength of the pinning is controlled. Our results reveal new fundamental dynamics at the interface of front dynamics and MI, and offer a route for tailored patterns of noiselike bursts of light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.