Abstract
The present study was performed in order to understand how a nonlinear load affects the characteristics of the RLC pulse shaping surge generator waveforms under simulation studies. The obtained results were compared when analytical equations were used as source models for both 1.2/50 µs voltage & 8/20 µs current impulses. Three circuit models; Capacitor Bank generator, Combination waveform generator and Schaffner generator were evaluated under nonlinear loads varied from 10Ω to 106 Ω for voltage impulses and for current impulses it was from 10-4 Ω to 1 Ω. As it can perceive from the analysis, delay time, rise time and FWHM remain unchanged throughout the tested impedance range when used model equations as generator sources. It was found that for voltage impulses, these values were 4.95 μs, 1.20 μs and 81.8 μs respectively. For current impulses, these values were 16.2 μs, 8.02 μs and 20.7 μs respectively. However results obtained for generator circuit models shows that delay time, rise time and FWHM deviated from above values up to maximum of 35.15 %, 106.67 % & 115.16 % respectively for voltage impulses. For current impulses these deviations were up to maximum of 79.63 %, 48.75 % & 39.61 % respectively. The deviations were due to influence caused by the nonlinear load to the generator circuit parameters and effective internal impedance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Letters of Chemistry, Physics and Astronomy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.