Abstract

The time-and-frequency resolved nonlinear light scattering (NLS) signals from a time evolving charge distribution of valence electrons prepared by impulsive X-ray pulses are calculated using a superoperator Green's function formalism. The signal consists of a coherent ~ N2-scaling difference frequency generation and an incoherent fluorescence ~ N-scaling component where N is the number of active molecules. The former is given by the classical Larmor formula based on the time-dependent charge density. The latter requires additional information about the electronic structure and may be recast in terms of transition amplitudes representing quantum matter pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.