Abstract

The resolution of a nonlinear parametric adjustment model is addressed through an isomorphic geometrical setup with tensor structure and notation, represented by a u-dimensional “model surface” embedded in a flat n-dimensional “observational space”. Then observations correspond to the observational-space coordinates of the pointQ, theu initial parameters correspond to the model-surface coordinates of the “initial” pointP, and theu adjusted parameters correspond to the model-surface coordinates of the “least-squares” point\(\bar P\). The least-squares criterion results in a minimum-distance property implying that the vector\(\bar P\)Q must be orthogonal to the model surface. The geometrical setup leads to the solution of modified normal equations, characterized by a positive-definite matrix. The latter contains second-order and, optionally, thirdorder partial derivatives of the observables with respect to the parameters. This approach significantly shortens the convergence process as compared to the standard (linearized) method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call