Abstract

In this paper, we consider the problem of joint direction-of-arrival (DOA) and fundamental frequency estimation. Joint estimation enables robust estimation of these parameters in multi-source scenarios where separate estimators may fail. First, we derive the exact and asymptotic Cramer-Rao bounds for the joint estimation problem. Then, we propose a nonlinear least squares (NLS) and an approximate NLS (aNLS) estimator for joint DOA and fundamental frequency estimation. The proposed estimators are maximum likelihood estimators when: 1) the noise is white Gaussian, 2) the environment is anechoic, and 3) the source of interest is in the far-field. Otherwise, the methods still approximately yield maximum likelihood estimates. Simulations on synthetic data show that the proposed methods have similar or better performance than state-of-the-art methods for DOA and fundamental frequency estimation. Moreover, simulations on real-life data indicate that the NLS and aNLS methods are applicable even when reverberation is present and the noise is not white Gaussian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.