Abstract

Least squares methods are effective for solving systems of partial differential equations. In the case of nonlinear systems the equations are usually linearized by a Newton iteration or successive substitution method, and then treated as a linear least squares problem. We show that it is often advantageous to form a sum of squared residuals first, and then compute a zero of the gradient with a Newton-like method. We present an effective method, based on Sobolev gradients, for treating the nonlinear least squares problem directly. The method is based on trust-region subproblems defined by a Sobolev norm and solved by a preconditioned conjugate gradient method with an effective preconditioner that arises naturally from the Sobolev space setting. The trust-region method is shown to be equivalent to a Levenberg–Marquardt method which blends a Newton or Gauss–Newton iteration with a gradient descent iteration, but uses a Sobolev gradient in place of the Euclidean gradient. We also provide an introduction to the Sobolev gradient method and discuss its relationship to operator preconditioning with equivalent operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.