Abstract

The purpose of the present effort is threefold. Firstly, it is shown that there exists a principle, that we call kinetical interaction principle (KIP), underlying the non-linear kinetics in particle systems, independently on the picture (Kramers, Boltzmann) used to describe their time evolution. Secondly, the KIP imposes the form of the generalized entropy associated to the system and permits to obtain the particle statistical distribution, both as stationary solution of the non-linear evolution equation and as the state which maximizes the generalized entropy. Thirdly, the KIP allows, on one hand, to treat all the classical or quantum statistical distributions already known in the literature in a unifying scheme and, on the other hand, suggests how we can introduce naturally new distributions. Finally, as a working example of the approach to the non-linear kinetics here presented, a new non-extensive statistics is constructed and studied starting from a one-parameter deformation of the exponential function holding the relation f(− x) f( x)=1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.