Abstract

An important tool in optical pattern recognition, the joint fractional transform correlator (JFTC), was introduced recently. We analyze the peak properties of fractional correlation (FC) by symbolic derivation and computer simulation. We show that the FC has a maximum correlation peak when the second fractional Fourier transform is reduced to the conventional Fourier transform. We introduce nonlinear operations in a joint fractional transform power spectrum and propose a differential JFTC and a binary differential JFTC. Numerical simulations show that such nonlinear JFTCs exhibit remarkable improvement in correlation peak intensity, discrimination capability, and signal-to-noise ratio. An optoelectronic setup that can implement such nonlinear JFTCs is also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.