Abstract

The tensile stress–strain response is considered to be the most important and fundamental mechanical property of ultra-high-performance fiber-reinforced concrete (UHPFRC). Nevertheless, it is still a challenging matter for researchers to determine the tensile properties of UHPFRC. As a simpler alternative to the direct tensile test, bending tests are widely performed to characterize the tensile behavior of UHPFRC, but require further consideration and a sophisticated inverse analysis procedure. In order to efficiently predict the tensile properties of UHPFRC, a nonlinear inverse method based on notched three-point bending tests (3PBT) was proposed in this paper. A total of fifteen UHPFRC beams were fabricated and tested to evaluate the sensitivity of the predicted tensile behavior to variations in fiber volume fraction. A segmented stress–strain model was used, which is capable of describing the various tensile properties of UHPFRC, including strain softening and strain hardening. A more approximate formulation was adopted to simulate the load–deflection response of UHPFRC beam specimens. The closed-form analytical solutions were validated by tensile test results and existing methods in literature. Finally, parametric studies were also conducted to investigate the robustness of the proposed method. The load–deflection responses obtained from notched 3PBT could be easily converted into tensile properties with this inverse method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call