Abstract

This paper describes the theory of nonlinear internal-solitary waves of the type observed in coastal seas. It also describes a numerical solution of an initial-value problem that leads to an internal solitary-like wave. The equations solved numerically are the Navier-Stokes, diffusion, and continuity equations. The computer solution illustrates that solitary-like waves are easily generated. A comparison with the theory illustrates that the wave is a KdV-like solitary wave. Hence, the computed wave is caused by a near balance between dispersive and nonlinear effects. However, the shape of the fully-nonlinear solitary wave is fore-aft asymmetric with a relatively long, somewhat elevated tail. This feature is characteristic of the computationally derived wave as compared with the fore-aft symmetry of the theoretical wave. (This work is motivated by the fact that internal solitary-like waves have practical importance in the design of offshore structures and on the acoustic properties of the sea, among other environmental consequences.)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call