Abstract

In a passive dendritic tree, inhibitory synaptic inputs activating ionic conductances with an equilibrium potential near the resting potential can effectively veto excitatory inputs. Analog interactions of this type can be very powerful if the inputs are appropriately timed and occur at certain locations. We examine with computer simulations the precise conditions required for strong and specific interactions in the case of a delta-like ganglion cell of the cat retina. We find some critical conditions to be that (i) the peak inhibitory conductance changes must be sufficiently large (i.e., approximately equal to 50 nS or more), (ii) inhibition must be on the direct path from the location of excitation to the soma, and (iii) the time course of excitation and inhibition must substantially overlap. Analog AND-NOT operations realized by satisfying these conditions may underlie direction selectivity in ganglion cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.