Abstract

The effects of online Transcranial Magnetic Stimulation (TMS) can qualitatively vary as a function of brain state. For example, TMS intensities which normally impair performance can have a facilitatory effect if the targeted neuronal representations are in a suppressed state. These phenomena have been explained in terms of the existence of distinct facilitatory and suppressive ranges as a function of TMS intensity which are shifted by changes in neural excitability. We tested this model by applying TMS at a low (60 % of phosphene threshold) or high (120 % of phosphene threshold) intensity during a priming paradigm. Our results show that state-dependent TMS effects vary qualitatively as a function of TMS intensity. Whereas the application of TMS at 120 % of participants’ phosphene threshold impaired performance on fully congruent trials (in effect, reducing the benefit of priming), TMS applied at a lower intensity (60 % of phosphene threshold), facilitated performance on congruent trials. These results demonstrate that behavioral effects of TMS reflect a nonlinear interaction between initial activation state and TMS intensity. They also provide support for the existence of facilitatory/suppressive ranges of TMS effects which shift when neural excitability changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.