Abstract

The modification of radial structure, frequency and intensity of turbulent transport in the presence of energetic-particle-driven geodesic acoustic modes (EGAMs) is analysed by means of full-f global gyro-kinetic simulations using Gysela code. It is observed that turbulence leads to a smoother evolution of the distribution function, less pronounced flattening of the distribution function in velocity space during the nonlinear saturation of EGAMs and reduced saturation level of electrostatic potential with respect to the case where turbulence is artificially suppressed. It is shown that EGAMs are excited and impact turbulent transport in the region where the EP is localised, fading away the staircase structure observed in the absence of energetic particles. For the first time, evidences of a three-wave coupling between turbulent modes and EGAMs in gyro-kinetic simulations are provided by means of bispectral analysis using wavelet transform in time. The coupling evolves from the standard self-regulation of turbulence by the zero-frequency zonal component to a steady-state regime where turbulence dynamics is dominated by the zonal component oscillating at the EGAM frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.