Abstract

Nonlinear interaction and coalescence features of oscillating bubble pairs are investigated experimentally and numerically. The spark technique is used to generate in-phase bubble pairs with similar size and the simulation is performed with the compressible volume of fluid (VOF) solver in OpenFOAM. The initial conditions for the simulation are determined from the reference case, where the interbubble distance is sufficiently large and the spherical shape is maintained at the moment of maximum volume. Although the microscopic details of the coalescing behaviors are not focused, the compressible VOF solver reproduces the important features of the experiment and shows good grid convergence. We systematically investigate the effects of the dimensionless interbubble distance γ (scaled by the maximum bubble radius) and define three different coalescing patterns, namely, coalescence due to the expansion in the first cycle for γ < 1.1 (Pattern I), bubble breaking up and collapsing together with coalescence at the initial rebounding stage for 1.1 < γ < 2.0 (Pattern II), and coalescence of the rebounding toroidal bubbles for 2.0 < γ < 3.65 (Pattern III). For Pattern I, prominent gas flow and velocity fluctuation can be observed in the coalescing region, which may induce the annular protrusion in the middle of the coalesced bubble. For Patterns II and III, migration of the bubbles toward each other during the collapsing and rebounding stages greatly facilitates the bubble coalescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.