Abstract
In this paper we present a numerical solution method for the Bernoulli free boundary value problem for the Laplace equation in three dimensions. We extend a nonlinear integral equation approach for the free boundary reconstruction (Kress, 2016) from the two-dimensional to the three-dimensional case. The idea of the method consists in reformulating Bernoulli’s problem as a system of boundary integral equations which are nonlinear with respect to the unknown shape of the free boundary and linear with respect to the boundary values. The system is linearized simultaneously with respect to both unknowns, i.e., it is solved by Newton iterations. In each iteration step the linearized system is solved numerically by a spectrally accurate method. After expressing the Fréchet derivatives as a linear combination of single- and double-layer potentials we obtain a local convergence result on the Newton iterations and illustrate the feasibility of the method by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.