Abstract

The influence of a current-aligned guide magnetic field on the nonlinear resonant instability of thin current sheets is investigated by means of three-dimensional Vlasov-code simulations. Similarly to the zero-guide field case, the pressure gradient excites lower-hybrid-drift (LHD) waves at the current sheet edges. However, since the LHD waves are excited perpendicular to the local magnetic field they propagate obliquely to the current direction. As a result, the number of resonant particles, i.e., the drift-resonance efficiency, decreases with increasing guide field strength. Hence, the driving of global current sheet kink/sausage instabilities becomes less efficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call