Abstract

This work develops a discrete-time dynamical feedback system model for a simplified TCP network with RED control and provides a nonlinear analysis that can help in understanding observed parametric sensitivities. The model describes network dynamics over large parameter variations. The dynamical model is used to analyze the TCP-RED operating point and its stability with respect to various RED controller and system parameters. Bifurcations are shown to occur as system parameters are varied. These bifurcations, which involve the emergence of oscillatory and/or chaotic behavior, shed light on the parametric sensitivity observed in practice. The bifurcations arise due to the presence of a nonlinearity in the TCP throughput characteristic as a function of drop probability at the gateway. Among the bifurcations observed in the system are period doubling and border collision bifurcations. The bifurcations are studied analytically, numerically, and experimentally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.