Abstract

An analytical solution for the nonlinear in-plane free oscillations of the suspended cable which contains the quadratic and cubic nonlinearities is investigated via the homotopy analysis method (HAM). Different from the existing analytical technique, the HAM is indeed independent of the small parameter assumption in the nonlinear vibration equation. The nonlinear equation is established by using the extended Hamilton\'s principle, which takes into account the effects of the geometric nonlinearity and quasi-static stretching. A non-zero equilibrium position term is introduced due to the quadratic nonlinearity in order to guarantee the rule of the solution expression. Therefore, the mth-order analytic solutions of the corresponding equation are explicitly obtained via the HAM. Numerical results show that the approximate solutions obtained by using the HAM are in good agreement with the numerical integrations (i.e., Runge-Kutta method). Moreover, the HAM provides a simple way to adjust and control the convergent regions of the series solutions by means of an auxiliary parameter. Finally, the effects of initial conditions on the linear and nonlinear frequency ratio are investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.