Abstract

SynopsisThis paper deals with initial value problems in ℝ2 which are governed by a hyperbolic differential equation consisting of a nonlinear first order part and a linear second order part. The second order part of the differential operator contains a small factor ε and can therefore be considered as a perturbation of the nonlinear first order part of the operator.The existence of a solution u together with pointwise a priori estimates for this solution are established by applying a fixed point theorem for nonlinear operators in a Banach space.It is shown that the difference between the solution u and the solution w of the unperturbed nonlinear initial value problem (which follows from the original problem by putting ε = 0) is of order ε, uniformly in compact subsets of ℝ2 where w is sufficiently smooth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.