Abstract

We present a nonlinear impedance spectroscopy technique and demonstrate its ability to directly measure nonlinear processes including electron-hole recombination and space charge effects in organic-semiconductor-based diodes and MIS capacitors. The method is based on Fourier analysis of the measured higher harmonic current response to an AC voltage signal. Characterization of the higher harmonic response allows nonlinear impedance spectroscopy to measure material and device properties over a wide range of frequencies, which would otherwise be impossible using conventional impedance spectroscopy. As the higher harmonic signals are purely a product of nonlinear processes, they are independent of the linear device capacitance and resistance. This allows space charge and recombination effects to be investigated at several orders of magnitude higher frequency without fitting to an equivalent circuit model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call