Abstract
Discrete ill-posed problems are often encountered in engineering applications. Still, their sound analysis is not yet common practice and difficulties arising in the determination of uncertain parameters are typically not assigned properly. This contribution provides a tutorial review on methods for identifiability analysis, regularization techniques and optimal experimental design. A guideline for the analysis and classification of nonlinear ill-posed problems to detect practical identifiability problems is given. Techniques for the regularization of experimental design problems resulting from ill-posed parameter estimations are discussed. Applications are presented for three different case studies of increasing complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.