Abstract

The conception of aircraft morphing wings thrives in aeronautics since the appearance of shape memory alloys (SMAs). An aircraft morphing wing device, manipulated by an SMA actuator, inherits the intrinsic nonlinear hysteresis from the SMA actuator, ending up with control disadvantages. Conventionally, systems with SMA actuators are constrained to bi-stable states to bypass the hysteresis region. Rather than retreating a morphing wing device to bi-stable states, this paper is dedicated to transcend the morphing wing device beyond the customary limit. A methodology of discrete Preisach modeling, which identifies the hysteresis of the morphing wing device, is proposed herein. An array of discrete equal-distance points is applied to the Preisach plane in order to derive the Preisach density over the partitioned unit of the Preisach plane. Discrete Preisach modeling is fulfilled by the discrete first-order reversible curve (DFORC). By utilizing the discrete Preisach model, the aircraft morphing wing device is simulated; the validity and accuracy of discrete Preisach modeling are demonstrated by contrasting the simulated outcome with experimental data of the major hysteretic loop and the wingspan-wise displacement over time; a comparison between simulation and experimental results exhibits consistency. Afterwards, a hysteresis compensation strategy put forward in this paper is implemented for quasi-linear control of the aircraft morphing wing device, which manifests a compensated shrinking hysteresis loop and attains the initiative of extending the morphing range to the intrinsic hysteretic region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.