Abstract

Wave-drift added mass results from nonlinear interactions between waves and low-frequency oscillatory motions of a floating body, in the presence of incident waves. In previous works, wave-drift damping which is the component of wave-drift force in phase with the velocity of low-frequency oscillations was investigated mainly based on a quasi-steady analysis. However, investigations related to wave-drift added mass, the component in phase with acceleration, were very few. In this paper, wave-drift added mass is derived directly from a perturbation analysis with two small parameters and two time scales, using a Cartesian coordinate system that follows the low-frequency oscillations, dynamic oscillation model has been used. Especially, the method to solve higher-order potentials, which are necessary for evaluation of wave-drift added mass, is presented. Analytical solutions and calculated results of wave-drift added mass, and far field radiation conditions for each order of potentials are obtained. Also, wave-drift added mass of floating bodies has been systematically measured from a slowly forced oscillation test or a free decay test in waves. Experimental results are compared with calculated results. Then, for a supplement, the secular behavior that some velocity potentials show is discussed. Applying a multiple scale perturbation analysis to one of these problems, a nonsecular solution is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.