Abstract

Nonlinear hybrid dynamical systems are the main focus of this paper. A modeling framework is proposed, feedback control strategies and numerical solution methods for optimal control problems in this setting are introduced, and their implementation with various illustrative applications are presented. Hybrid dynamical systems are characterized by discrete event and continuous dynamics which have an interconnected structure and can thus represent an extremely wide range of systems of practical interest. Consequently, many modeling and control methods have surfaced for these problems. This work is particularly focused on systems for which the degree of discrete/continuous interconnection is comparatively strong and the continuous portion of the dynamics may be highly nonlinear and of high dimension. The hybrid optimal control problem is defined and two solution techniques for obtaining suboptimal solutions are presented (both based on numerical direct collocation for continuous dynamic optimization): one fixes interior point constraints on a grid, another uses branch-and-bound. These are applied to a robotic multi-arm transport task, an underactuated robot arm, and a benchmark motorized traveling salesman problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.